

First HEP applications of plasma wakefield acceleration

Matthew Wing (UCL) covering Lol #133 (M. Wing et al., AWAKE++...) and Lol #170 (S. Gessner et al., Beamdumps...)

- Introduction.
- Search for new phenomena in a beam-dump experiment.
- Deep inelastic scattering experiments.

Introduction

- What can plasma wakefield acceleration deliver for high energy physics?
- Survey and brainstorm on possible HEP experiments with an electron beam from O(10 GeV) up to TeV scale.
 - A high energy, high luminosity e+e- collider may be the ultimate application, but not the first.
 - Are there experiments with less challenging beam parameters?
 - The HEP experiment must be achievable with novel plasma wakefield accelerator technology but must have compelling novel particle physics cases.
 - Can learn about acceleration process in less challenging environment (e.g. fixed-target) on way to more challenging applications (collider).
- Laser-driven and beam-driven (electrons or protons) plasma wakefield acceleration should consider what can be achieved.
 - The different types of plasma wakefield acceleration are complementary and one may be more appropriate for a given HEP application.

E.g. a simple roadmap : High E ep collider High E, high collider collider

Possible "first" HEP experiments/applications

- Use of electron beam for test-beam infrastructure, either / or for detector characterisation and as an accelerator test facility.
- Beam-dump experiments to search for exotics, e.g. dark photons or milliQ.
- Fixed-target experiments using electron beams, e.g. deep inelastic scattering.
- Measure strong-field QED in electron-laser collisions.
- Use as electron injector for EIC.
- High energy electron-proton collider, i.e. a low-luminosity LHeC-type experiment.
- Very high energy electron-proton collider (VHEeP).

This is not a definitive list and people are invited to think of other possible uses / applications / experiments.

Characteristics for beam-dump experiments

This plot shows past, current, and planned dark sector experiments as coloured circles, and planned PWFA experiments as grey squares.

Plasma accelerators deliver highcharge, short-pulse bunches, which are good for suppressing out-of-time backgrounds in beam-dump experiments.

In order to compete with other proposed beam-dump (thick target) experiments, a plasma-based experiment should deliver high numbers of electrons (or positrons) on target per year or high energy.

AWAKE: electrons in proton-driven plasma wakefield acceleration

- AWAKE R&D programme based at CERN using 400 GeV SPS protons
- Facility should have space for fixedtarget/beam-dump experiments.
- Aim for O(50 GeV) for such facility by end of decade.
- Could also use LHC protons as drivers for TeV electrons.
- Limited to where have high energy proton beams, so RHIC/BNL could be used*.

Dark photons search, $A' \rightarrow e^+e^-$ channel

- Dark sectors with light, weakly-coupling particles are a compelling possibility for new physics.
- Given the paucity of high energy electron beams, a new 50 GeV facility can make a real impact.
- Based around NA64 experiment but with bunches and more electrons on target.
- Can extend to higher dark photon masses in the region ε ~ 10⁻³ – 10⁻⁵.
- Could realise such a beam/experiment within a decade.
- With a 1 TeV beam, can go to much higher masses:
 - Approaching 1 GeV for same ε region.
 - Beyond other planned experiments.

A. Caldwell et al., arXiv:1812.11164, EPPSU input M. Wing, Phil. Trans. R. Soc. A 377: 20180185.

Strong-field QED

- The same O(50 GeV) beam could be brought into collision with a high-power laser.
- Study strong-field QED at values related to the Schwinger critical field.
- Follows on from pioneering E144 experiment at SLAC.
- High energy electron beam can be used for measurements of strong-field QED:
 - See efforts at EuXFEL and FACET-II, etc. and earlier session.
 - Higher energy leads to gains.

deliver more than 10²¹

EoT/year.

Using beam from the NC linac, we can deliver more than 10¹⁹ **End Station A LDMX** S30XL EoT/year. **Beamline** To LDMX **Existing LCLS** A-Line LCLS - II SC LINAC FACET-II LCLS-I Sector - 0 Sector - 10 Sector - 20 S30XL Kicker Plas. Exp To Plas. Exp. Using beam from the existing LCLS **SLAC Linac** existing ESA S30XL proposal SC linac, we can

Accelerator	Linac Energy	After Plasma	Bunch Charge	Rate	Current	EOT/year
NC to ESB	$10~{ m GeV}$	$20\text{-}50~\mathrm{GeV}$	$0.2 2.0 \times 10^{10}$	$120~\mathrm{Hz}$	19-190 nA	$0.4 \text{-} 4 \times 10^{19}$
SC to ESB	$8~{ m GeV}$	$16\text{-}40~\mathrm{GeV}$	$0.3 3.0 \times 10^9$	$1-62.5~\mathrm{kHz}$	$0.5 30 \ \mu\text{A}$	$0.1 \text{-} 6.0 \times 10^{21}$

As an example, we examine the exclusion curve from the SLAC MilliQ experiment and assume:

- 10x increase in EoT over milliQ
- 10x increase in detector sensitivity
- Beam energy scaled down to 20 GeV from 30 GeV for the 1998 experiment.

Achieving 10x increase in EoT requires 2 years of operation with NCRF linac at SLAC or a few weeks of operation with the new SCRF LCLS-II linac.

Deep inelastic scattering

- 50 GeV electrons on fixed-target give √s ~ 10 GeV; interesting ?
- TeV electrons on a fixed-target give $\sqrt{s} \sim 50$ GeV, similar to EIC energies.
- 50 GeV electrons colliding with LHC protons gives √s ~ 1 TeV, i.e. LHeC energies.
- Use LHC as driver for $E_e = 3 \text{ TeV}$ and $\sqrt{s} = 9.2 \text{ TeV}$, but with modest luminosities, $O(10^{28}-10^{29} \text{ cm}^{-2} \text{ s}^{-1})$: VHEeP.
- Completely new regime, well beyond other ep colliders; exciting physics potential.
- Revolutionise QCD; new theories; links to gravity, cosmic rays, etc..

- *ep* experiments, fixed-target or colliding beams, do not require electron beam parameters as challenging as e.g. ILC.
- ep experiments do not necessarily need positrons, although they do provide extra physics.

Discussion

- Plasma wakefield acceleration has near-term applications in HEP on the timescale of a decade.
- Beam-dump experiments are compelling applications:
 - Less challenging beam parameters for PWA to achieve.
 - Searches for new physics possible with expected PWA beams.
 - Input from HEP, detectors, theory, etc., would be welcome.
 - Ideas at AWAKE and SLAC already show potential.
 - Other PWA projects/facilities should also consider whether they can generate appropriate beams.
 - More thorough survey of beam-dump experiments with PWA beams would be good to consider all possibilities.

Discussion

- What other near-term possibilities are there for PWA?
- Electron-proton collider could be an application.
 - ▶ At AWAKE++, we considered LHeC-type machine:
 - Electrons of energy 50 GeV should be doable.
 - Small amount of civil construction.
 - Modest luminosity limited by proton driver from SPS.
 - But may be a cost-effective option.
 - What about other PWA techniques ?
 - Could e.g. laser wakefield acceleration generate 10s of GeV beams with suitable repetition rate and minimal civil construction on timescale of end of planned LHC running?
 - An LHeC-like experiment would be an excellent application for PWA and should be considered more seriously.
- We should think beyond ultimate applications for PWA and think what can be done in the near-term.